Yeast Yeast 2004; 21: 947–962. Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/yea.1142

Yeast Functional Analysis Report

A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes

Carsten Janke¹, Maria M. Magiera², Nicole Rathfelder³, Christof Taxis³, Simone Reber³,

Hiromi Maekawa⁴, Alexandra Moreno-Borchart⁵, Georg Doenges⁵, Etienne Schwob², Elmar Schiebel⁴ and Michael Knop^{3,5,*}

¹CRBM, CNRS FRE2593, 1919 Route de Mende, F-34293 Montpellier cedex 5, France

²IGM, CNRS UMR5535, 1919 Route de Mende, F-34293 Montpellier cedex 5, France

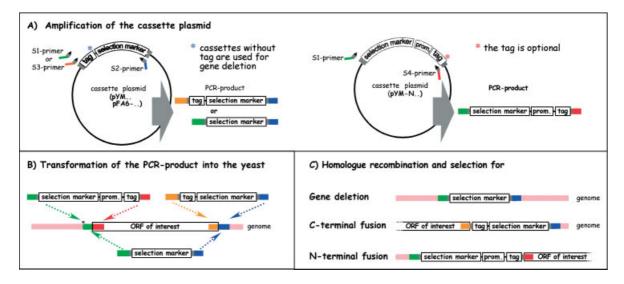
³EMBL, Heyeshofstraße 1, D-69117, Heidelburg, Germany

⁴Paterson Institute for Cancer Research, Wilmslow Road, Manchester M20 4BX, UK

⁵Max-Planck-Institute for Biochemistry, Department of Molecular Cell Biology, Am Klopferspitz 18A, 82152 Martinsried, Germany

Abstract

*Correspondence to: Michael Knop, EMBL, Cell Biology and Biophysics, Meyerhofstrasse I, D-69117 Heidelberg, Germany. E-mail: knop@embl-heidelberg.de


Tagging of genes by chromosomal integration of PCR amplified cassettes is a widely used and fast method to label proteins in vivo in the yeast Saccharomyces cerevisiae. This strategy directs the amplified tags to the desired chromosomal loci due to flanking homologous sequences provided by the PCR-primers, thus enabling the selective introduction of any sequence at any place of a gene, e.g. for the generation of C-terminal tagged genes or for the exchange of the promoter and N-terminal tagging of a gene. To make this method most powerful we constructed a series of 76 novel cassettes, containing a broad variety of C-terminal epitope tags as well as nine different promoter substitutions in combination with N-terminal tags. Furthermore, new selection markers have been introduced. The tags include the so far brightest and most yeast-optimized version of the red fluorescent protein, called RedStar2, as well as all other commonly used fluorescent proteins and tags used for the detection and purification of proteins and protein complexes. Using the provided cassettes for N- and C-terminal gene tagging or for deletion of any given gene, a set of only four primers is required, which makes this method very cost-effective and reproducible. This new toolbox should help to speed up the analysis of gene function in yeast, on the level of single genes, as well as in systematic approaches. Copyright © 2004 John Wiley & Sons, Ltd.

Received: 7 November 2003 Accepted: 19 May 2004

Introduction

The targeted introduction of heterologous DNA to genomic locations by a simple polymerase chain reaction (PCR)-based strategy has been widely used for research, particularly with the fungi *Saccharomyces cerevisiae* and *Schizosaccharomyces pombe* (Bahler *et al.*, 1998; Baudin *et al.*, 1993; Knop *et al.*, 1999; Krawchuk and Wahls, 1999; Longtine *et al.*, 1998; Schneider *et al.*, 1995; Tasto *et al.*, 2001; Wach *et al.*, 1994, 1997). These strategies have been shown to be powerful tools in systematic gene deletion, protein localization and

protein complex purification (Gavin *et al.*, 2002; Ho *et al.*, 2002), as well as for single gene-function analysis. The strategy requires: (a) a pair of primers that contain within their 5' region sequences of homology to the genomic target location; and (b) PCR-cassettes (also termed 'modules') that can be amplified using these primers. To make the technique most powerful and cost-efficient, we constructed a series of new cassettes and included in all of them identical primer-binding sites, which allow the amplification of all C-terminal tags with only one pair of primers per gene. An additional primer is needed for gene deletion (Knop *et al.*, 1999) and

Figure 1. The principle of PCR-based epitope tagging. Schematic illustration of the principle of genomic manipulation of yeast strains using PCR-based strategies. The plasmid contains a cassette, which consists of a selection marker and additional sequences, which can be promoter sequences and/or sequences that encode for a tag (e.g. GFP). The S1-, S2-, S3- and S4-primers allow amplification of cassettes (A) and targeting of the respective PCR product to the desired genomic location (B), which becomes defined by the overhangs provided by the S1- S2-, S3- and S4-primers (see colour-encoded primers in the figure: the same colours indicate homologous sequences). Depending on whether a gene deletion, a C- or a N-terminal gene fusion should be performed, specific pairs of the S1- S2-, S3- or S4-primers are used to amplify the cassette. Upon transformation, an integration of the cassettes into the yeast genome occurs due to homologous recombination (C). For primer designs, see Figure 2

a fourth primer for the introduction of sequences at the N-terminus (Figure 1).

In addition to the previously published 12 cassettes for C-terminal epitope tags (Knop *et al.*, 1999), we present here a wider range of C-terminal tags as well as two new selection markers, both carrying dominant antibiotic-resistance genes. We also describe new cassettes that allow the replacement of the promoter of a given gene, with the optional addition of an N-terminal epitope tag to the gene. Nine promoters, five of them inducible, were cloned into different cassette plasmids.

The construction of PCR-cassettes is straightforward and can be done via standard cloning strategies (details provided upon request). Therefore, it will be easy to create new cassettes, e.g. to introduce new combinations of tags, makers and promoters (in the case of N-terminal tagging) by simple cloning procedures.

Materials and methods

Cassette plasmid construction

Standard techniques were used for DNA manipulations (Sambrook et al., 1989). The construction of

Copyright © 2004 John Wiley & Sons, Ltd.

the PCR-cassette pYM1-12 is described in Knop *et al.* (1999). The construction of the new cassettes is summarized in Table 1; the primers used are listed in Table 2 (further details can be obtained upon request). A comprehensive overview of all available C-terminal tagging cassettes, with regard to selection marker and tag, is provided in Table 3.

Amplification of the PCR-modules

A set of four primers allows to amplify all Nand C-terminal tags and to generate gene deletions. The principle of the primer design is explained in Figure 2. The amplification of the modules can cause problems, because the annealing sites for S1, S2 and S3 primers (Figure 2), which were chosen initially for the EUROFAN project, lead to self-annealing of the primers. Another problem is the high GC content of the *natNT2* marker. To circumvent these problems, different PCR conditions have been used (Goldstein and McCusker, 1999). We present here one particular condition, which works well in several laboratories. One other reason for the failure of the PCR

Name	Used with primers	Size of product	Pro- moter	Tag	Marker	Primers ²	Template/ origin of tag or promoter	Target plasmid	Restriction sites used	Control digest
pFA6a—natNT2	SI/S2-	1460			natNT2	natMX4-1/natMX4-	pEG202 ⁴	pFA6-natMX4 ^{7,3}	Xhol/Sacl	Notl 2390+1394 bp
pFA6a-hphNT1	S1/52-	1840			hphNTI	2 ⁻ ADH1-1/ADH1-2 hphMX4-1/hphMX4- 2 ⁵	p425-Gal 16	pFA6-hphMX4 ^{5.7}	Xhol/Sacl	Notl 2390+1777 bp
pYM13 pYM14	52/53- 52/53-	2330 1820		TAP 6HA	kanMX4 kanMX4		Oligos annealed pYM3	pYM8 pFA6a–kanMX4	Sall/BamHI Sall/BgIII c/o BamHI	Sall/Xbal 4568+111 bp Notl 2390+1782 bp Hindlll/Xhal
pYM15 pYM16 pYM17	S2/S3- S2/S3- S2/S3-	1670 2050 1670		6HA 6HA 6HA	HIS3MX6 hphNT1 natNT2	рҮМЗ/6_F/рҮМЗ/6_R рҮМЗ/6_F/рҮМЗ/6_R рҮМЗ/6_F/рҮМЗ/6_R	р ҮМ 3 р ҮМ 3 р ҮМ 3	pFA6a—HisMX6 pKS133 pKS134	Sall/Bg/II c/o BamHI Sall/Bg/II c/o BamHI Sall/Bg/II c/o BamHI	2333+1217
		000						-		2767+1251 bp
pYM18 pYM19	52/53- 52/53-	1990 1830		9Mvc 9Mvc	kanMX4 HIS3MX6	рҮМЗ/6_F/рҮМЗ/6_R bYM3/6_F/bYM3/6_R	рҮМ6 ФҮМ6	pFA6a–kanMX4 bFA6a–HISMX6	Sall/BgIII c/o BamHI Sall/BgIII c/o BamHI	EcoRI/Sall 2459+1881 bp Hindlll/Pvul 3278+906 bp
pYM20	S2/S3-	2220		9Myc	hphNTI	pYM3/6_F/pYM3/6_R	pYM6	pKS133	Sall/Bg/II c/o BamHI	HindIII/Xhol 2697+1872 bp
pYM21	52/S3-	1840		9Myc	natNT2	pYM3/6_F/pYM3/6_R	pYM6	pKS134	Sall/Bg/II c/o BamHI	HindIII/Xhol 2767+1419 bp
рҮМ22 АУМ23	52/53- 57/53-	1310		3MVC 3MVC	kitrp i	КПКРТ-Т/КПКРТ-2 ИТКРТ-Т/ИТКРТ-2	pYM3 hYM3	pYMI bYM4	BssHII/EcoRI RssHII/EcoRI	Notl 2390+ 1268 bp BrimHI/Xhol 2479+1200 hp
pYM24	S2/S3-	0161		3HA	hphNTI	No PCR	1 MYd	pKS133	Sall/BssHII	Notl 2390+ 1875 bp BssHII/Sall 4141+174 bp
pYM25	S2/S3-	2550		yeGFP ⁸	hphNTI	No PCR	pYM12	pKS133	Sall/BssHII	BamHI/Xhol 2721+2184 bp BssHII/Sall 4141+764 bp
pYM26	S2/S3-	1950		yeGFP ⁸	KITRP I	<u> ЫТКР I - I /ЫТКР I - 2</u>	pYM3_	pYM12	BssHII/EcoRI	Xhol/Xbal 3710+588 bp
pYM27	S2/S3-	2550		EGFP	kanMX4	GFP-4/GFP-6	pEGFP ⁹	pYM I	Sall/BamHI	Sall/BamHI 4187+753 bp
pYM28	S2/S3-	2400		EGFP	HIS3MX6	GFP-4/GFP-6	pEGFP ⁹	pYM2	Sall/BamHI	Sall/BamHI 4831+753 bp
pYM29	S2/S3-	1950		EGFP	kitrp i	GFP-4/GFP-6	pEGFP"	pYM3	Sall/BamHI	Sall/BamHI 3570+753 bp
pYM30	S2/S3-	2550		ECFP	kanMX4	GFP-4/GFP-6	pECFP	pYM /	Sall/BamHI	Sall/BamHI 4187+753 bp
pYM31	S2/S3-	2400		ECFP	HIS3MX6	GFP-4/GFP-6	pECFP	pYM2	Sall/BamHI	Sall/BamHI 4031+753 bp
pYM32	52/53-	1950		ECFP	KITRP I	GFP-4/GFP-6	pECFP"	pYM3	Sall/BamHI	Sall/BamHI 3570+753 bp
p Y/M33	52/23-	0552		EBFP	kan/N/X4	GFP-4/GFP-0	pebre	pYM1	Sall/BamHI	dd 23//bamH1 418/+/53 bp
pYM34	52/53-	1950		EBFP	KITRP I	GFP-4/GFP-6	pEBFP7	pYMI	Sall/BamHI	BgIII/EcoRI 3500+1446 bp
csmrd	52/53-	2520		Dskedi	kan/NX4	KedI-I/KedI-Z	pDsked1-N1	pYM4	BssHII/BamHI	Sall/Stul 4391+475 bp
pYM36	S2/S3-	2000		DsRed1	kitrp i	No PCR	pSM822	pSM825	BssHII/BamHI	Hindlll/Xhol 2455+1804 bp
pYM37	S2/S3-	2520		DsRed	kanMX4	dsRED-1/dsRED-2	DsRed ¹⁰	pFA 6a – kanMX4	BssHII/BamHI	<i>Not</i> l 2390+2251 bp
pYM38	52/S3-	2520		RedStar	kanMX4	dsRED-2/dsRED-7	RedStar	pFA6a–kanMX4	BssHII/BamHI	Sall/Ncol 3521+1120 bp BssH11/Sall 3915+1186 bp

Copyright $\ensuremath{\textcircled{}}$ 2004 John Wiley & Sons, Ltd.

Yeast 2004; 21: 947-962.

		ļ								
	Used	Size					Template/			
Name	with primers	of product	Pro- moter	Tag	Marker	Primers ²	origin of tag or promoter	Target plasmid	Restriction sites used	Control digest
рҮМ39	S2/S3-	2600		EYFP	kanMX4	GFP-4/GFP-6	pEYFP ⁹	1 MY d	Sall/BamHI	Sall/BamHI 4187+753 bp
pYM40	S2/S3-	2820		EYFP	hphNTI	No PCR	pYM-YK	pKS133	Sall/BssHII	Sall/Xhol 2715+2231 bp
pYM41	S2/S3-	2400		EYFP	HIS3MX6	GFP-4/GFP-6	pEYFP9	pYM2	Sall/BamHI	Xbal/Pvul 2732+2058 bp
pYM42	S2/S3-	2150		RedStar [*]	natNT2	RedStar2-	RedStar ¹⁰	pKS134-1	Sall/BamHI	BamHI/Sall 3778+717 bp
						BamHI/RedStar2-Sall				
pYM43	S2/S3-	2150		RedStar2 ¹⁵	natNT2	Site-directed	RedStar2	pKS134—1	Sall/BamHI	BamHI/Sa/I 3778+717 bp
				c		mutagenesis ¹⁵				
pYM44	S2/S3-	2310		yeGFP ⁸	HIS3MX6	No PCR	pYM5	pYM12	BstEll/EcoRl	Sall/BssHll 4141+763 bp
pYM45	S2/S3-	1740		IHA	kanMX4	HA-FI/HA-F2	Oligos annealed	pYMI	Sall/BssHII	BgII/EcoRI 2730+1446 bp
pYM46	S2/S3-	1760		I Myc–7His	kanMX4	MYC-7×His-F1 /MYC- 7×His-F2	Oligos annealed	hWM1	Sall/BssHII	BgIII/EcoRI 2488+1446+266 bp
pYM47	S2/S3-	1852		FIASH	hphNTI	FIAsH-1/FIAsH-2	Oligos annealed	pYM-hphNTI	Sall/BamHI	BamHI/Xhol 2751+1446 bp
pYM48	S2/S3-	2569		PA-GFP ¹²	hphNTI	GFP-4/GFP-6	PA-GFP	pYM-hphNTI	Sall/BamHI	BamHI/Xhol 3468+1446 bp
pYM51	S2/S3-	2500		eqFP611 ¹³	KanMX4	eqFP611-11-2	pBS-KS+eqFP611 ¹³	pYM12	Sall/BssHII	BamHI/Xhol 4184+704
hVM-NI	S1/S4-	0661	CUP1-1		kanMX4	CUP1-A/CUP1-B	Yeast genomic DNA	PFA6a-kanMX4	SachEcoRI	Notl 2390+2031 bp
pYM-N2	SI/S4-	1830	CUP1-1		natNT2	CUPI-A/CUPI-B	Yeast genomic DNA	pYM–natNT2	SacI/EcoRI	Notl 2390+1874 bp Hindlll/Xhol
										3247+1017 bp
pYM-N3	SI/54-	1980	CUPI-I	3HA	natNT2	HA-1%CUP/HA- 2%CLIP	pYM I	pMM40	BspEl/EcoRl	Sall/Xbal 2848+1564 bp
bYM-N4	S1/S4-	2590	CUP1-1	veGFP ⁸	natNT2	eGFP%CUP-	pYM12	pMM40	BspEl/EcoRI	Sall/Xbal 3454+1564 bp
						1/eGFP%CUP-2			-	-
pYM-N5	SI/S4-	2260	CUP1-1	ProA	natNT2	ProA-1n/ProA-2n	pCW804	pMM40	BspEl/EcoRl	Sall/Xbal 3127+1564 bp
рҮМ–N6		2987	ADH		kanMX4	No PCR	p413-ADH ¹⁴	pYM-NI	Sacl/Smal c/o BspEl+Klenow	Sacl/EcoRI 1480 bp
PYM−N7		2827	ADH		natNT2	No PCR	p413-ADH ¹⁴	pYM–N2	Sacl/Smal c/o BspEl+Klenow	Sacl/EcoRI 1480 bp
pYM–N8		2977	ADH	3HA	natNT2	No PCR	p413-ADH ¹⁴	pYM–N3	Sacl/Smal c/o BspEl+Klenow	Sacl/EcoRI 1628 bp
pYM–N9		3587	ADH	yeGFP ⁸	natNT2	No PCR	p413-ADH ¹⁴	pYM-N4	Sacl/Smal c/o BspEl+Klenow	Sacl/EcoRl 2234 bp
pYM-NI0		1816	CYCI		kanMX4	No PCR	p413-CYC1 ¹⁴	pYM-NI	Sacl/Smal c/o BspEl+Klenow	Sacl/EcoRl 309 bp
htm-nii		1656	CYCI		natNT2	No PCR	p413-CYC1 ¹⁴	pYM–N2	Sacl/Smal c/o BspEl+Klenow	Sacl/EcoRl 309 bp
pYM-NI2		1806	CYCI	3HA	natNT2	No PCR	p413-CYC1 ¹⁴	pYM–N3	Sacl/Smal c/o BspEl+Klenow	Sacl/EcoRI 457 bp
pYM-N13		2416	CYCI	yeGFP ⁸	natNT2	No PCR	p413-CYC1 ¹⁴	pYM-N4	Sacl/Smal c/o BspEl+Klenow	Sacl/EcoRI 1063 bp
pYM-N14		2143	GPD	.	kanMX4	No PCR	p413-GPD ¹⁴	pYM-NI	Sacl/Smal c/o BspEl+Klenow	Sacl/EcoRl 639 bp
pYM-NI5		1983	GPD		natNT2	No PCR	p413-GPD ¹⁴	pYM-N2	Sacl/Smal c/o BspEl+Klenow	Sacl/EcoRl 639 bp
pYM-N16		2133	GPD	3HA	natNT2	No PCR	p413-GPD ¹⁴	pYM–N3	Sacl/Smal c/o BspEl+Klenow	Sacl/EcoRl 784 bp
pYM-N17		2743	GPD	yeGFP ⁸	natNT2	No PCR	p413-GPD ¹⁴	pYM—N4	Sacl/Smal c/o BspEl+Klenow	Sacl/EcoRI 1390 bp
pYM-N18		1932	TEF		kanMX4	No PCR	p413-TEF ¹⁴	pYM-NI	Sacl/Smal c/o BspEl+Klenow	Sacl/EcoRI 425 bp
pYM-N19		1772	TEF		natNT2	No PCR	p413-TEF ¹⁴	pYM–N2	Sacl/Smal c/o BspEl+Klenow	Sacl/EcoRI 425 bp
pYM-N20	SI/S4-	1922	TEF	3HA	natNT2	No PCR	p413-TEF ¹⁴	pYM-N3	Sacl/Smal c/o BspEl+Klenow	Sacl/EcoRl 573 bp

Table I. Continued

Copyright © 2004 John Wiley & Sons, Ltd.

Yeast 2004; 21: 947-962.

pYM-N21	S1/S4-	2532	TEF	yeGFP ⁸	natNT2	No PCR	p413-TEF ¹⁴	pYM-N4	Sacl/Smal c/o BsplE+Klenow	Sacl/EcoRI 1179 bp
pYM-N22	S1/S4-	1978	GALI		kanMX4	No PCR	p413-GAL16	pYM-NI	Sacl/Smal c/o BspEl+Klenow	Sacl/EcoRI 471 bp
pYM-N23	S1/S4-	1818	GALI		natNT2	No PCR	p413-GAL16	pYM-N2	Sacl/Smal c/o BspEl+Klenow	Sad/EcoRI 471 bp
pYM-N24	S1/S4-	1968	GALI	3HA	natNT2	No PCR	p413-GAL16	pYM-N3	Sacl/Smal c/o BspEl+Klenow	Sacl/EcoRl 619 bp
pYM-N25	S1/S4-	2578	GALI	yeGFP ⁸	natNT2	No PCR	p413-GAL16	pYM-N4	Sacl/Smal c/o BspEl+Klenow	Sad/EcoRI 1225 bp
pYM-N26	S1/S4-	1951	GALL		kanMX4	No PCR	p413-GALL ⁶	pYM-NI	Sacl/Smal c/o BspEl+Klenow	Sacl/EcoRI 444 bp
pYM-N27	S1/S4-	1791	GALL		natNT2	No PCR	p413-GALL ⁶	pYM-N2	Sacl/Smal c/o BspEl+Klenow	Sacl/EcoRI 444 bp
pYM-N28	S1/S4-	1941	GALL	3HA	natNT2	No PCR	p413-GALL ⁶	pYM-N3	Sacl/Smal c/o BspEl+Klenow	Sad/EcoRI 592 bp
pYM-N29	S1/S4-	2551	GALL	yeGFP ⁸	natNT2	No PCR	p413-GALL ⁶	pYM-N4	Sacl/Smal c/o BspEl+Klenow	Sacl/EcoRI 198 bp
pYM-N30	S1/S4-	1935	GALS		kanMX4	No PCR	p413-GALS ⁶	pYM-NI	Sacl/Smal c/o BspEl+Klenow	Sacl/EcoRI 428 bp
pYM-N31	S1/S4-	1775	GALS		natNT2	No PCR	p413-GALS ⁶	pYM-N2	Sacl/Smal c/o BspEl+Klenow	Sacl/EcoRI 428 bp
pYM-N32	S1/S4-	1925	GALS	3HA	natNT2	No PCR	p413-GALS ⁶	pYM-N3	Sacl/Smal c/o BspEl+Klenow	Sacl/EcoRl 576 bp
pYM-N33	S1/S4-	2535	GALS	yeGFP ⁸	natNT2	No PCR	p413-GALS6	pYM-N4	Sacl/Smal c/o BspEl+Klenow	Sacl/EcoRI 1182 bp
pYM-N34	S1/S4-	1902	MET25		kanMX4	No PCR	p413-MET256	pYM-NI	Sacl/Smal c/o BspEl+Klenow	Sacl/EcoRl 395 bp
pYM-N35	S1/S4-	1742	MET25		natNT2	No PCR	p413-MET256	pYM–N2	Sacl/Smal c/o BspEl+Klenow	Sacl/EcoRl 395 bp
рҮМ–N36	S1/S4-	1892	MET25	3HA	natNT2	No PCR	p413-MET256	pYM-N3	Sacl/Smal c/o BspEl+Klenow	Sacl/EcoRI 543 bp
рҮМ–N37	SI/S4-	2505	MET25	yeGFP ⁸	natNT2	No PCR	p413-MET25 ⁶	pYM–N4	Sacl/Smal c/o BspEl+Klenow	Sacl/EcoRI 1149 bp
The four rig	he four rightmost columns list the primer	umns list th	he primers,	plasmids and	1 restriction s	ites used for PCR (s, plasmids and restriction sites used for PCR construction of the cassettes.	settes.		

Copyright © 2004 John Wiley & Sons, Ltd.

5 nseo 0 DUD B lers, e tour rightmost co For N-terminal tags.

² See Table 2 for primer sequences.

¹ before subcloning of the ADH1-terminator, a Xhol site was introduced into plasmid pFA6-natMX4 using the indicated primers and the Quickchange Kit (Clonetech). ⁴ Gyuris et al., 1993.

⁵ Before subcloning of the CYCI-terminator, a Xhol site was introduced into plasmid pFA6-hphMX4 using the indicated primers and the Quickchange Kit (Clonetech).

⁶ Mumberg et al., 1995.

⁷ Goldstein and McCusker, 1999.

⁸ Cormack et al., 1996. ⁹ From Clonetech.

¹⁰ Knop et al., 2002.

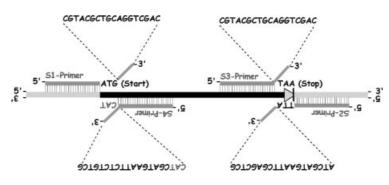
¹¹ RedStar* is identical to RedStar except that the T217A mutation is missing, which causes an increase in green fluorescence (Bevis and Glick, 2002).

¹² Patterson and Lippincott-Schwartz, 2002.

¹³ Wiedenmann et al., 2002.

¹⁴ Mumberg et al., 1994.

¹⁵ RedStar2 has been constructed by introduction of the T4 mutations (Bevis and Glick, 2002) into RedStar.


Table 2. Primer sequences

Primer name	Sequence $(5' \rightarrow 3')$
ADHI-I	GACAGAGAGCTCGATTACAACAGGTGTTGTCCTC
ADHI-2	CTGGCCTCGAGGCGAATTTCTTATGATTTATGATTT
CBP-as	TCGACGCTAGCAGTAGTTGGAATATCATAATCAAGTGCCCCGGAGGATGAGATTTTCTTAAAGCGGTTGGCT
	GCTGAGACGGCTATGAAATTCTTTTTCCATCTTCTCTTG
CBP-s	TCGACAAGAGAAGATGGAAAAAGAATTTCATAGCCGTCTCAGCAGCCAACCGCTTTAAGAAAATCTCATCC
	TCCGGGGCACTTGATTATGATATTCCAACTACTGCTAGCG
CUPI-A	GCGACGGAGCTCTAGTAAGCCGATCCCATTACC
CUPI-B	CGACGAATTCTCTGTCGTCCGGATTTATGTGATGATTGAT
CYCI-term	GACAGAGAGCTCGTTAAAGCCTTCGAGCGTCCC
dsRED-1	CGGGATCCGGAGCAGGTGCTGGTGCTGGTGCTGGAGCAATTCTGGGTAGATCTTCTAAGAACGTC
dsRED-2	AAGTGGCGCGCTTACAAGAACAAGTGGTGTCTAC
dsRFD-7	CGGGATCCGGAGCAGGTGCTGGTGCTGGTGCTGGAGCAATTCTGAGTAGATCTTCTAAGAACGTC
eGFP%CUP1-1	GCACGACTCCGGAATGTCTAAAGGTGAAGAATTATTCAC
eGFP%CUP1-2	CATCCGAGAATTCTCTGTCGGACCAGCACCGGCACCGGCACCAGCACCGGCACCAGCACCTTTGTACAATT
	CATCCATACCATG
GFP-4	CCTGGGATCCTTACTTGTACAGCTCGTCCATGC
GFP-6	GCACTGGTCGACGGAGCAGGTGCTGGTGCTGGAGCAATGAGCAAGGGCGAGGAGC
HA-1%CUP	GCACGACTCCGGAATGGGTTACCCATACGATGTTCCTGACTATGCG
HA-2%CUP	CATCCGAGAATTCTCTGTCGGACCAGCACCGGCACCGGCACCAGCACCAGCACCAGAGCACTGA
	GCAGCGTAATCT
HA-FI	TCGACTACCCATACGACGTCCCAGACTACGCTTAG
HA-F2	CGCGCTAAGCGTAGTCTGGGACGTCGTATGGGTAG
hphMX4-1	GGCAAAGGAATAATCTCGAGTACTGACAATAAAAAG
hphMX4-2	CTTTTTATTGTCAGTACTCGAGATTATTCCTTTGCC
kitrp1-1	AGTCTAGGCGCGCAAAGTGGAACGATCATTCAC
kITRP1-2	AGGCCGAATTCGAGCTCGCCTCGAGGC
M13hin	AGCGGATAACAATTTCACACAGGA
MYC-7xHis-F1	TCGACGAGCAGAAGCTGATTAGCGAGGAAGATCTGCACCACCATCACCATTAG
MYC-7xHis-F2	CGCGCTAATGGTGATGGTGGTGGTGGCAGATCTTCCTCGCTAATCAGCTTCTGCTCG
natMX4-1	GCCCTGCCCTAATCTCGAGTACTGACAATAAAAAG
natMX4-2	CTTTTTATTGTCAGTACTCGAGATTAGGGGCAGGGC
pYM3/6_F	AGCTTCGTACGCTGCAGGTCG
pYM3/6_R	GGTAAGATCTCTTGAATGATCGTTCCACTTTTAGC
ProA-In	GCACGACTCCGGAATGGCGCAACACGATGAAGCCGTAG
ProA-2n	CATCCGAGAATTCTCTGTCGGACCAGCACCGGCACCAGGAGCACCAGCGCCTGGAGCACCAGCACCATTCG
	CGTCTACTTTCGGCG
Red I - I	GGATCCGGAGCAGGTGCTGGTGCTGGTGCTGGAGCAATGGTGCGCTCCTCCAAGAACGTC
Red1-2	AGAAGTGGCGCGCAGCTACAGGAACAGGTGGTGGCGGCC
RedStar2-BamHI	GCGAGGATCCTTACAAGAACAAGTGGTGTCTAC
RedStar2-Sall	GGACACAGTCGACGGAGCTGGAGCTGGTGCAGGTGCTGGTGCAATGAGTGCTTCTTCTGAAGATGTCATCA
	СТБААТТСАТБАБАТТСААБ
FIAsH-1	TCGACTGTTGTCCAGGTTGTTGTGCTAGAGCCTGAG
FIAsH-2	GATCCTCAGGCTCTAGCACAACAACCTGGACAACAG
S2-SPC42	TACACAGAACGCTTTAAGAATGCGCCATACTCCTTAACTGCTTTTTAAATCATCAATCGATGAATTCGAGCTCG
S3-SPC42	CAAGCCTGAAAATAATATGTCAGAAACATTCGCAACTCCCAACTACCGACGTACGCTGCAGGTCGAC
S2-SPC72	AGAGAGTGACTGAGTGTTACATTAAATATATTATATATAAACGTATGATATTTAATCGATGAATTCGAGCTCG
S3-SPC72	ACAGGAAAATGAGTCATTGAGATCGAAACTTTTCAACCTATCAACAATCCCCGTACGCTGCAGGTCGAC
SI-SSPI	TCACAATAGTGCCTATTATCATGATAGAAGTAGAAGAAGAGCTAGCAACAATGCGTACGCTGCAGGTCGAC
S4-SSP1	GGGAAGTTGAGGTTATTTCCCCAGAAGGATCATTCTCATATGTGCCAGAGCTTCTCATCGATGAA TTCTCTGTCG
SI-DONI	TATCTACTTGACTTTGGCTGGTATTTAAACACAAGTAAGAGAAGCATCAAACATGCGTACGCTGCAGGTCGAC
S4-DONI	TTAGAAAAGAGGTTTTAGCAGCATTATTTTCTTTTCCCTTTCTATTTTTCTTTC
egFP611-1	GCAGCAGCAGCGCGCCTCGAGTCAAAGACGTCCCAGTTTG
eqFP611-2	GCGCAGCGCGGTCGACGGAGCAGGTGCTGGTGCTGGTGCTGGAGCAGGGATCCGTATGAATTCACTGATC
	AAGGAA

Tag	kanMX4	hphNTI	natNT2	HIS3MX6	kITRPI
Deletion module (no tag)	pFA6a- <i>kanMX4</i>	pYM–hphNTI	pYM–natNT2	pFA6a–HIS3MX6	
IHA	pYM45				
3HA	pYMI	pYM24		pYM2	pYM22
6HA	pYMI4	pYMI6	pYM17	pYMI5	pYM3
IMYC–7His	pYM46				
3MYC	pYM4			pYM5	pYM23
9MYC	pYM18	pYM20	pYM21	pYMI9	pYM6
ProA	pYM7	·			•
TEV-ProA	pYM8				
TEV-ProA-7His	рҮМ9			pYM10	
TEV-GST-6HIS	pYMII				
TAP	pYMI3				
yeGFP (em507, ex488 nm)	pYMI2	pYM25		pYM44	pYM26
EGFP (em507, ex488 nm)	pYM27			pYM28	pYM29
ECFP (em475 (501), ex433 (453) nm)	pYM30			pYM31	pYM32
EBFP (em447, ex383 nm) [#]	pYM33				pYM34
DsRed I (em583, ex558 nm)	рҮМ35				рҮМ36
DsRed (yRFP) (em583, ex558 nm)	рҮМ37				
RedStar (em583, ex558 nm)	рҮМ38				
RedStar* (em583, ex558 nm)	рҮМ42				
RedStar2 (em583, ex558 nm)	, рҮМ43				
EYFP (em527, ex513 nm)	, рҮМ39	pYM40		pYM41	
PA–GFP (photo activated GFP)		, рҮМ48			
FIAsH		pYM47			
eqFP611 (em611, ex559 nm)	pYM51	·			

Table 3. Systematic table of all available pYM plasmids for C-terminal tagging and deletion

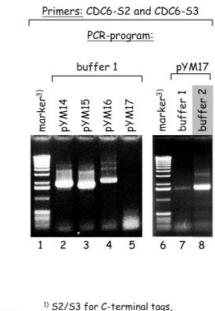
[#] BFP is a very weak fluorescent protein. So far, we have not yet successfully used the BFP-modules. However, we provide the cassette since some strongly expressed proteins might be well detected when tagged with BFP.

Figure 2. Primer design. The figure illustrates the design of the primers S1- S2-, S3- and S4 that are used for the amplification of the cassettes described in this paper. The correct primer design is fundamental for the success of the PCR amplification and the correct targeting into the yeast genome. The following rules should help to design the primers using specific software such as DNA Strider: S1-primer, 45–55 bases upstream of the ATG (including ATG = start codon) of the gene, followed by 5'-CGTACGCTGCAGGTCGAC-3'; S2-primer, the reverse complement of 45–55 bases downstream of the STOP-codon including STOP) of the gene, followed by 5'-CGTACGCTGCAGGTCGAC-3'; S4-primer, the reverse complement of 45–55 bases downstream of the reverse complement of 45–55 bases downstream of the reverse complement of 45–55 bases downstream of the ATG (start-codon) of the gene (excluding ATG), followed by 5'-CATCGATGAATTCTGTGCG-3'

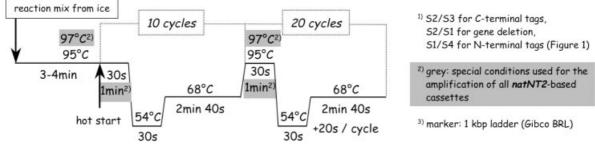
is often linked to the quality of the primers (see Discussion).

The pipetting scheme for a 50 μ l reaction and the PCR cycle scheme are visualized in Figure 3A/B. A successful PCR gives a very strong band at the estimated size (Table 1, Figure 3C), when 3–5 μ l of the PCR were analysed on a standard agarose gel. Some *natNT2* cassettes might cause problems. The use of another PCR-buffer (Figure 3C) circumvents this problem.

For transformation of S288c- or W303-derived strains, usually 5 μ l of a PCR were used. For some


A) Reaction setup (50µl)

5µl 10x buffer 1 (500mM tris/HCl, pH9.2, 22.5mM MgCl2, 160mM NH4504) or 5ul2) 10x buffer 2 (500mM tris/HCI, pH9.2, 22.5mM MgCl2, 160mM NH4504, 20% DM50, 1% Triton-X100) 28.35µl H2O 8.75µl dNTP-Mix (2mM each dNTP) 3.24 10µM Sx-primer1) 3.2µl 10µM Sy-primer1) 111 ≈100µg/ml cassette plasmid mix well hot start with 2 U taq polymerase (Gibco) and 0.4 U Vent polymerase (NEB) other strain backgrounds (such as SK-1), a 10-fold higher amount of DNA was used. For this purpose, the PCR product was ethanol-precipitated and dissolved in water (1/10 of the original volume).


Yeast strains and growth conditions

YPD and synthetic drop-out media were prepared as described (Sherman, 1991). For antibiotic selection markers, the following concentrations of antibiotics were added to standard YPD-plates

C) Analysis of PCR-products:

B) Amplification program:

Figure 3. Amplification of PCR-cassettes. (A) 50 μ l of a PCR-sample are mixed on ice. For the amplification of *hphNT1*and *natNT2*-containing cassettes, it is recommended to use buffer 2. (B) The amplification programme is the same for all cassettes except the modification in the melting step for *natNT2*-based cassettes (grey-shaded). (C) pYM14-17 (6HA-tag) were amplified with the S2/S3 primers of *CDC6*. 5 μ l of the PCR reaction were analysed on a 0.9% agarose-TAE gel. The gel was stained with ethidium bromide. As reference, 10 μ l 1 kbp marker, diluted according to the manufacturers' instructions (Invitrogen, Gibco, BRL) was run (1, 6). Under standard conditions, amplification of pYM14 (2) and pYM15 (3) gave a very strong band at the expected size (Table 1). The amplification of pYM16 (4) was less efficient, but sufficient for transformation of the PCR-product; pYM17 could not be amplified under standard conditions (5). With the special protocol (B), pYM17 was weakly amplified in buffer 1 (7); a very strong PCR-product of the correct size (Table 1) was amplified when special conditions (B) and buffer 2 were used (8)

(www.duke.edu/web/microlabs/mccusker/; Goldstein and McCusker, 1999): *kanMX4*, geneticin (G418, GibcoBRL), 200 mg/l; *hphNT1*, hygromycin B (Cayla, Toulouse, France; www.cayla.com), 300 mg/l; and *natNT2*, nourseothricin (ClonNAT, Werner BioAgents, Jena-Cospeda, Germany; www. webioage.com), 100 mg/l.

The antibiotics were added after autoclaving and cooling of the medium to approximately 60 °C. In the case of ClonNAT, a sterile filtered stock-solution was prepared prior to addition to the medium, while for geneticin and hygromycin B, the powder and the solution provided by the manufacturer were used directly.

Yeast transformation and testing

Yeast transformation using frozen competent cells was based on the LiOAc method (Schiestl and Gietz, 1989), however with several modifications. A detailed description of the method is given in Knop *et al.* (1999).

For *klTRP1* or *HIS3MX6* selection, after transformation cells were resuspended in 200 µl sterile PBS and plated directly onto plates containing synthetic medium lacking the respective amino acid (SC-HIS, SC-TRP; Sherman, 1991).

For *kanMX4*, *hphNT1*, *natNT2*-selection: after transformation, cells were resuspended in 3 ml of YPAD medium and incubated on a shaker for at least 5-6 h at 30 °C, than sedimented and plated onto the selection plates.

Selection for positive transformants on plates containing antibiotics often requires replica plating of the plate after 2 days at 30 °C, because of the high background of transiently transformed cells, which makes it difficult to recognize the correct integrants (Knop *et al.*, 1999; Wach *et al.*, 1997). The success of the integration was tested by colony PCR using a quick chromosomal DNA isolation procedure (Finley and Brent, 1995), immunoblotting or by immunofluorescence, as described previously (Knop *et al.*, 1999). For immunoblotting, protein extraction was done using the NaOH/ β ME/TCA-protocol (Knop *et al.*, 1999).

For the detection of epitope-tagged proteins, tagspecific antibodies were used: HA-tag, mouse monoclonal 12CA5 (Roche Boehringer-Mannheim), 16B12 (Babco); Myc-tag, mouse monoclonal 9E10 (Boehringer-Ingelheim); Protein A/TAP-tag, rabbit PAP (DAKO); Don1p, affinity purified rabbit anti-Don1p (Rabitsch *et al.*, 2001); GFP, affinitypurified sheep anti-GFP. For ECL detection (Amersham), goat anti-mouse, -rabbit or -sheep secondary antibodies coupled to horseradish peroxidase (Jackson Immuno Research Laboratories) were used.

Plasmid requests

The full collection of plasmids and the sequence files will be made available for non-commercial recipients through EUROSCARF (http://www.unifrankfurt.de/fb15/mikro/euroscarf/index.html).

The plasmids have been prepared and tested carefully; however, we cannot guarantee that no error has been made. In case of problems, please do not contact any of the authors unless you are *absolutely* sure that the problem is associated with the plasmid (use positive controls!).

Results

Two new selection markers: *hphNT1* and *natNT2*

Recently, Goldstein and McCusker (1999) introduced three new dominant drug resistance cassettes that can be used in the yeast S. cerevisiae. The cassettes were constructed in analogy to the pFA6-kanMX4 marker (Goldstein and McCusker, 1999; Wach et al., 1994), thus allowing the use of the established S1/S2-primer annealing sites (Wach et al., 1994; Knop et al., 1999) for amplification. The hphMX4 and natMX4 (Goldstein and McCusker, 1999) markers confer resistance to hygromycin B or clonNat (nourseothricin), respectively, and were cloned in-between the promoter and terminator of the kanMX4 cassette (Wach et al., 1994). The homologous sequences flanking the different marker genes, however, lead to recombination between the markers, if the two markers are used simultaneously in the same yeast strain. To circumvent this problem, we exchanged the terminator of the hphMX4 cassette and replaced it with the terminator of the CYC1 gene. Similarly, we replaced the *natMX4* terminator with the *ADH1* terminator. The new cassettes were termed hphNT1 and *natNT2*, respectively (NT = new terminator;Table 1). As demonstrated in a control experiment (not shown), kanMX4, natNT2 and hphNT1 completely failed to recombine with each other.

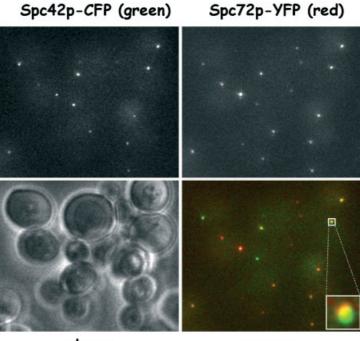
C-terminal tagging: fluorescent proteins

The availability of a variety of fluorescent proteins, such as yeGFP (Cormack et al., 1997), EGFP, EBFP, ECFP, EYFP (http://www.clontech.com/ gfp/excitation.shtml), DsRed (Matz et al., 1999), hcRED (Gurskaya et al., 2001) and RedStar, a much brighter version of DsRed (Knop et al., 2002), consequently led to the construction of new cassettes. The coding regions of the six fluorophores were cloned into tagging cassettes preceded by a spacer sequence that codes for the peptide 'SGAGAGAGAGAIL'. This spacer peptide can facilitate the correct folding of the fluorescent proteins when coupled to the protein of interest (Miller and Lindow, 1997). Additionally, we provide a cassette containing the red fluorescent protein eqFP611 (Wiedenmann et al., 2002).

The properties of some of the GFP derivatives are summarized in a review article (Tsien, 1998; for spectral properties, see also Table 3). All of them have been successfully used for applications in baker's yeast, such as *in vivo* double labelling and live cell imaging. The suitability of each of the individual fluorescent proteins for a specific experiment, however, has to be tested each time.

The red fluorescent protein DsRed has been limited to special application in yeast (Pereira et al., 2001), since the formation of the red chromophore (Baird *et al.*, 2000) is not fast enough $(T_{1/2} \sim 24 \text{ h})$ to allow the detection of de novo synthesized proteins in logarithmically growing cells. This has been partially solved by the construction of a much brighter variant, called RedStar (Knop et al., 2002), or by a faster-maturing but less bright variant named T4-DsRed (Bevis and Glick, 2002). We constructed a combination of the T4-DsRed and the RedStar mutant, which leads to a bright, fast-maturing red fluorescent protein, RedStar2. We provide for several of these DsRed variants cassettes (Table 1), most of which contain yeast codon optimized constructs. The last drawback of DsRedvariants, their strong tetramerization (Baird et al., 2000), has only recently been solved (Campbell et al., 2002), but this monomeric DsRed variant seems to be not yet bright enough for general applications in yeast (unpublished observation). However, the red fluorescent protein eqFP611 (Wiedenmann et al., 2002) largely circumvents this problem.

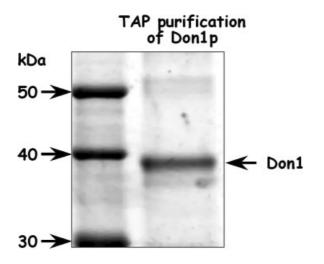
Double labelling using different fluorescent proteins


For double-fluorescent labelling, different fluorescent proteins can be combined: GFP together with DsRed, GFP and BFP, GFP and CFP, and YFP in conjunction with CFP. The combination of YFP and CFP is frequently used. The tagged proteins can be distinguished with appropriate filters. However, both, CFP and YFP bleach faster then GFP. The CFP signals often appeared weakly fluorescent when observed by eye; however, imaging with a CCD-camera gave nice and strong signals (Figure 4).

C-terminal tagging: HA, MYC and TAP tag

HA and MYC-tags are used for the detection of the tagged proteins by immunoblotting and immunofluorescence microscopy. A combination of two tagged proteins (HA and MYC, respectively) in one strain is widely used to detect protein-protein interaction by co-immunoprecipitation. Furthermore, it became obvious that proteins with low expression levels can be detected when several repeats of the HA or Myc tag (6HA or 9Myc) were fused to the protein. On the other hand, too many tags may interfere with the functionality of the fusion protein. For native protein purification, it has been shown that single HA-tagged proteins can be eluted from anti-HA beads using the HA peptide (YPYDVPDYA), while this was not possible when multiple tags were used. Because of these considerations, we constructed a variety of PCR modules using single, triple and hexa- or nona-tags in combination with a variety of selection markers (Table 3), thus enabling the flexible construction of strains carrying different tags at the same time.

The use of Protein A as an affinity tag has shown to be a powerful tool for the purification of proteins from yeast lysates, especially in combination with a calmodulin-binding peptide (CBP) and a TEV sitespecific protease cleavage site. This combination of features, called the TAP tag (Rigaut *et al.*, 1999), has been shown to be very useful for native protein complex purification (Gavin *et al.*, 2002).


An example for the application of the TAP tag PCR module (pYM13) is shown in Figure 5.

phase

merge

Figure 4. Double labelling of two C-terminal tagged proteins: CFP and YFP. *SPC42* was tagged with CFP amplified from the cassette plasmid pYM30; *SPC72* was tagged with YFP amplified from pYM41, using the corresponding S2 and S3 primers (Table 2). The cells were collected in logarithmic growth and fixed for 5 min with 4% (w/v) paraformaldehyde. The cells were analysed by fluorescence microscopy

Figure 5. Purification of Don Ip using the TAP-tag. The protein Don Ip was tagged with the TAP tag using pYMI3 and DONI specific S2- and S3-primers. The protein was purified from the soluble fraction of meiotic cells using a modified version of the protocol of Rigaut *et al.* (1999)

Other tags

Recently, other tags with specific properties became fashionable. The FlAsH tag consists of a small peptide, containing four cystein residues (DCCPGC-CA), that is recognized by specific di-arsenic compounds, which, upon binding, become fluorescent (Adams et al., 2001). We have tested the FlAsH tag and found that it worked also in yeast; however the maximally obtainable level of fluorescence, when compared with the analogous GFP fusion, was less than 5%, thus limiting the usefulness of this tag. Similarly, we also constructed a cassette containing the photo-activatable GFP (PA-GFP; Patterson and Lippincott-Schwartz, 2002). Proteins carrying this tag emitted, when maximally activated, less than 10% of the fluorescence compared to GFP-tagged versions. This limits the usefulness of this tag in yeast.

Promoter replacement and N-terminal tagging

The introduction of a heterologous promoter upstream of the START codon of a gene is a way to control and to modulate gene expression. At the same time, it allows the introduction of a N-terminal epitope tag to the gene.

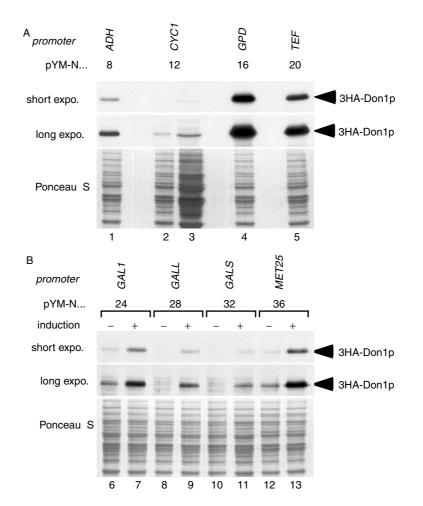
We constructed a set of cassettes with nine different replacement promoters. Eight of these promoters were well characterized from previous applications in centromeric or 2 µ plasmids (Mumberg et al., 1994, 1995). The replacement of an internal promoter with the constitutive ADH, CYC1, GPD or TEF promoters can be used to modulate the expression of a gene in a permanent manner. For inducible expression, the GAL1 promoter and two truncated (and weaker) derivatives of this promoter, termed GALL and GALS (Mumberg et al., 1994), as well as the MET25 promoter, are provided. All the promoters were cloned into cassettes with kanMX4 and natNT2 selection markers. Additionally, all natNT2 promoter-substitution cassettes were combined with a N-terminal 3HA and yeGFP (Cormack et al., 1997) tag (Table 1). We observed different expression rates of the gene DON1 when controlled by the eight different promoters. The inducible promoters are not always completely repressed in the non-induced state. In the case of the relatively strong MET25 and the GAL1 promoters, a weak expression was observed in the repressed state of the promoter (glucose complete medium; Figure 6). In contrast, the two weaker versions of the GAL-promoter, GALL and GALS, were completely repressed (Figure 6).

Furthermore, we constructed five cassettes containing the *CUP1-1* promoter (Table 1). This strong promoter can be induced with $CuSO_4$. We used this system successfully for the regulated induction of gene expression during various phases of the meiotic cell cycle (unpublished data). An example of the expression of Ssp1p under control of *CUP1-1* is given in Figure 7.

Discussion

In the present paper, we describe 37 new cassettes for the C-terminal epitope tagging of yeast proteins, developed by combining existing tags with new marker genes and cloning new tags, namely a variety of different fluorescent proteins of all available colours, and the TAP-tag. Furthermore, a series of 37 N-terminal cassettes has been developed that allow, besides the replacement of the promoter of the target gene, the introduction of

Copyright © 2004 John Wiley & Sons, Ltd.


N-terminal tags. For one single gene, all these cassettes can be amplified with four unique primers (Figures 1 and 2). The versatility of the primers is a strong advantage not only regarding to the cost of the method. Also, once all four primers have been successfully tested, any concerns about the quality of the primers can be omitted, which can turn out in some cases to be quite important (see below). The cloning strategies for most of the cassettes were based on common restriction sites, which facilitate the construction of further cassettes, if necessary (Table 1; further details available upon request).

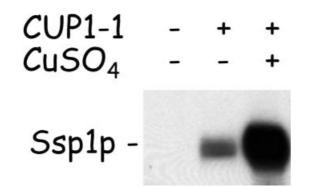
PCR amplification and primers

Since the PCR amplification of the cassettes has caused problems in different laboratories, we describe a PCR-protocol suitable for the amplification of almost all of the cassettes. This protocol works well (in several laboratories), and fulfils three major criteria: reliability, fidelity and high yield. It requires, however, a reliable PCR machine that allows time increment programming. For the amplification of natNT2-based cassettes, this protocol needs to be slightly modified due to the high GC content of the coding sequence of this marker gene (see Materials and methods; Figure 3). Another reason why sometimes the PCR does not work is the poor primer quality. We found, that for some suppliers, up to 20% of the primers do not work (e.g. 40% of the PCRs performed), while for other suppliers, less then 5% are non-functional (less than 10% of PCRs performed) with respect to amplification of modules. Testing the primers in combination with established primers can help to nail down the faulty primer (companies normally will provide a free replacement primer).

New selection markers

The use of the *hphNT1* and *natNT2* cassettes is as robust as the *kanMX4* cassettes. Cells selected on antibiotic media tend to form a lawn, due to the growth of transiently transformed cells, which might hinder the identification of positive clones. In such a case the cells were replica-plated after 2 days of growth onto a fresh plate of the same medium. On the new plate, only positive clones grow. Using *kanMX4* and *HIS3MX6* together in one strain led to recombination events within the

Figure 6. Control of expression of *DON1* using a range of different promoter substitutions. The promoter of the gene *DON1* was exchanged for all available promoters (except *CUP1-1*; cf. Figure 7) associated with the N-terminal 3HA-tag. Cultures were grown into the exponential growth phase. Western blot detection was done with the monoclonal antibody 16B12. Equal protein load was verified by staining the blots with Ponceau S. Two different expositions are shown to underline the differences in promoter strength. (A) Constitutive promoters: *GPD* (lane 4) and *TEF* (lane 5) induce very strong protein expression; the *ADH*-promoter (lane 1) is weaker; whereas the *CYC1*-promotor (lane 2) is very weak, therefore it was detected with a $5 \times$ protein load (lane 3); $12 \,\mu$ g (60 μ g in lane 3) total protein were analysed. (B) Inducible promoters: induction was performed by adding 1% glucose (-) or 1% galactose (+) to YEP-raffinose medium (all *GAL*-promoters) or by washing and transferring the culture to SC-met medium (*MET25*-promoter). Induction time was 90 min. $12 \,\mu$ g total protein were analysed. The inducible promoters are different in strength; the very strong *MET25* and the strong *GAL1* are slightly leaky (lanes 6 and 12)


marker genes. After the transformation of the second cassette, positive clones must be selected on both, G418 and SC-His plates. The *klTRP1* cassette seems to promote a somewhat less-thanwild-type growth rate when used to complement the *trp1* mutation; therefore, it is recommended to wait 2 more days in case no colonies appear 2-3 days after transformation. Usually, transformants were confirmed using colony PCR in combination with either immunoblotting using anti-HA, anti-Myc, anti-GFP or PAP (for detection of protein A tags) antibodies or fluorescence microscopy (to visualize fusions with fluorescent proteins) or indirect immunofluorescence microscopy (HA or Myc fusions).

New fluorescent markers

We observed that yeGFP (Cormack *et al.*, 1997) and EGFP (Clontech) do not show observable

Copyright © 2004 John Wiley & Sons, Ltd.

C. Janke et al.

Figure 7. Control of expression of SSP1 by the CUP1-1 promoter. The gene SSP1, expressed only during meiosis (Moreno-Borchart et al., 2001), was chromosomally tagged using pYM-NI and SI and S4 primers for SSP1. Expression of the gene was detected in mitotically growing cultures. Ssp1p expression was followed in the CUP1-1-SSP1 strain and in a control strain with the unaltered SSP1 gene in the absence or presence of CuSO₄ (100 μ M, 2 h), as indicated in the figure. Upon cell lysis, Ssp1p was detected using a specific antibody

differences in brightness, although they do contain different mutations compared to the wildtype GFP.

We have also provided a number of different cassettes containing DsRed and mutagenized versions of DsRed. Due to the properties of the DsRed protein, its application is somewhat limited compared to GFP. This is mainly due to its strong tetramerization (Baird *et al.*, 2000), which can interfere with protein function (Knop *et al.*, 2002). Table 4 summarizes some of the properties of the different red fluorescent proteins that are contained in our cassettes.

Table 4 Properties of the red fluorescent protein

Promoter exchange and N-terminal tagging

A new feature of the presented set of cassettes are the 37 new promoter substitution and Nterminal tagging modules. Apart from the CUP1-1 promoter, which was specifically cloned for N-terminal tagging of proteins that are involved in meiosis, all other promoters were taken from existing yeast plasmids, therefore, their expression levels have already been studied in detail and the promoters can be used according to these data (Mumberg et al., 1994, 1995). The promoter substitution can be applied for the determination of expression level-related phenomena, or simply to deplete a gene product. It was noted that, while the GAL1 and the MET25 promoters were slightly leaky under repressive conditions, the less active GALL and GALS were tightly repressed in glucose medium (unpublished data and Figure 6). The use of the GALS promoter might thus be a better tool than the until now frequently used GAL1 promoter, first because of the reduced leakiness, but also for the lower expression rate in the induced state.

Conclusion

Taken together, the new range of PCR-cassettes allows the use of more selection markers, the combination of more tags in one single strain and the application of fluorescence double labelling with CFP and YFP, but also with GFP and RedStar2, while dsRed and RedStar can be used as fluorescent timers (see above and Table 4). N-terminal tags and promoter substitutions allow to interfere with transcriptional regulation and to conditionally deplete gene products, while the availability

Name	Mutations	Tm1/2 (h)	Aggregation	Brightness relative to DsRed	Codon usage
DsRed		24	+++	1	Yeast
RedStar ^I	G2S, R18K, V97I, S113T, F125L, M183K, P187Q, T203I	Approx. 12	+	10-20 ²	Yeast
T4-DsRed ³	R2A, K5E, N6D, T21S, H41D, N42Q, V44A, A145P, T217A	0.7	_	0.3 ⁴	Original
RedStar2 ¹	Combination of RedStar ⁺ T4–DsRed mutations	Approx. 0.5–1 ⁵	_	2-4 ⁵	Yeast

¹ The yeast codon optimized sequence of DsRed, RedStar and RedStar2, contain an additional codon at position 2.

² Knop et al., 2002.

³ Please note that T4-DsRed is not included in the list of cassettes available.

⁴ Bevis and Glick, 2002.

⁵ Value not determined precisely.

of N-terminal tags provides the possibility to label proteins that cannot be tagged at the C-terminus. The need of only four different primers for the use of all cassettes described here and in Knop *et al.* (1999) makes the tagging cheap, reliable and flexible. However, the ease by which new strains can be constructed by this method should, of course, never prevent us from keeping one key question in mind: how does this manipulation affect the function of the gene?

Acknowledgements

The work of E. Schiebel was supported by the Cancer Research Campaign UK and of M. Knop by the Max-Planck-Institute of Biochemistry, Department of Molecular Cell Biology, Munich, Germany, and the EMBL, Heidelberg, Germany. C. Janke was supported by an EMBO longterm fellowship (ALTF 387-2001). E. Schwob was funded by CNRS and the Association pour la Recherche sur le Cancer (ARC), France. M. M. Magiera is supported by a PhD fellowship from the French Ministry of Research.

References

- Adams SR, Campbell RE, Gross RA, *et al.* 2001. New biarsenic ligands and tetracystein motifs for proteins *in vitro* and *in vivo*: synthesis and biological applications. J Am Chem Soc **124**: 6063–6076.
- Bahler J, Wu JQ, Longtine MS, *et al.* 1998. Heterologous modules for efficient and versatile PCR-based gene targeting in *Schizosaccharomyces pombe. Yeast* **14**: 943–951.
- Baird GS, Zacharias DA, Tsien RY. 2000. Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral. *Proc Natl Acad Sci USA* 97: 11984–11989.
- Baudin A, Ozier-Kalogeropoulos O, Denouel A, Lacroute F, Cullin C. 1993. A simple and efficient method for direct gene deletion in *Saccharomyces cerevisiae*. *Nucleic Acids Res* 21: 3329–3330.
- Bevis BJ, Glick BS. 2002. Rapidly maturing variants of the *Discosoma* red fluorescent protein (DsRed). *Nature Biotechnol* 20: 83–87.
- Campbell RE, Tour O, Palmer AE, et al. 2002. A monomeric red fluorescent protein. Proc Natl Acad Sci USA 99: 7877–7882.
- Cormack BP, Bertram G, Egerton M, *et al.* 1997. Yeast-enhanced green fluorescent protein (yEGFP)a reporter of gene expression in *Candida albicans. Microbiology* **143**: 303–311.
- Finley RLJ, Brent R. 1995. Interaction trap cloning with yeast. In DNA Cloning, Expression Systems: A Practical Approach, Hames BD, Glover DM (eds). Oxford University Press: Oxford; 169–203.
- Gavin AC, Bosche M, Krause R, *et al.* 2002. Functional organization of the yeast proteome by systematic analysis of protein complexes. *Nature* **415**: 141–147.
- Goldstein AL, McCusker JH. 1999. Three new dominant drug resistance cassettes for gene disruption in *Saccharomyces cerevisiae*. *Yeast* **15**: 1541–1553.

- Gurskaya NG, Fradkov AF, Terskikh A, *et al.* 2001. GFP-like chromoproteins as a source of far-red fluorescent proteins. *FEBS Lett* **507**: 16–20.
- Gyuris J, Golemis E, Chertkov H, Brent R. 1993. Cdi1, a human G_1 and S phase protein phosphatase that associates with Cdk2. *Cell* **75**: 791–803.
- Ho Y, Gruhler A, Heilbut A, *et al.* 2002. Systematic identification of protein complexes in *Saccharomyces cerevisiae* by mass spectrometry. *Nature* **415**: 180–183.
- Knop M, Siegers K, Pereira G, et al. 1999. Epitope tagging of yeast genes using a PCR-based strategy: more tags and improved practical routines. Yeast 15: 963–972.
- Knop M, Barr F, Riedel CG, Heckel T, Reichel C. 2002. Improved version of the red fluorescent protein (drFP583/DsRed/ RFP). *BioTechniques* 33: 592–603.
- Krawchuk MD, Wahls WP. 1999. High-efficiency gene targeting in *Schizosaccharomyces pombe* using a modular, PCR-based approach with long tracts of flanking homology. *Yeast* **15**: 1419–1427.
- Longtine MS, McKenzie A III, Demarini DJ, *et al.* 1998. Additional modules for versatile and economical PCR-based gene deletion and modification in *Saccharomyces cerevisiae*. *Yeast* **14**: 953–961.
- Matz MV, Fradkov AF, Labas YA, et al. 1999. Fluorescent proteins from nonbioluminescent Anthozoa species. Nature Biotechnol 17: 969–973.
- Miller WG, Lindow SE. 1997. An improved GFP cloning cassette designed for prokaryotic transcriptional fusions. *Gene* **191**: 149–153.
- Moreno-Borchart AC, Strasser K, Finkbeiner MG, *et al.* 2001. Prospore membrane formation linked to the leading edge protein (LEP) coat assembly. *EMBO J* **20**: 6946–6957.
- Mumberg D, Muller R, Funk M. 1994. Regulatable promoters of Saccharomyces cerevisiae: comparison of transcriptional activity and their use for heterologous expression. Nucleic Acids Res 22: 5767–5768.
- Mumberg D, Muller R, Funk M. 1995. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. *Gene* 156: 119–122.
- Patterson GH, Lippincott-Schwartz J. 2002. A photoactivatable GFP for selective photolabeling of proteins and cells. *Science* **293**: 1873–1877.
- Pereira G, Tanaka TU, Nasmyth K, Schiebel E. 2001. Modes of spindle pole body inheritance and segregation of the Bfa1p–Bub2p checkpoint protein complex. *EMBO J* **20**: 6359–6370.
- Rabitsch KP, Toth A, Galova M, *et al.* 2001. A screen for genes required for meiosis and spore formation based on whole-genome expression. *Curr Biol* **11**: 1001–1009.
- Rigaut G, Shevchenko A, Rutz B, *et al.* 1999. A generic protein purification method for protein complex characterization and proteome exploration. *Nature Biotechnol* **17**: 1030–1032.
- Sambrook J, Fritsch EF, Maniatis T. 1989. *Molecular Cloning: A Laboratory Manual*. Cold Spring Harbor Laboratory Press: New York.
- Schiestl RH, Gietz RD. 1989. High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. *Curr Genet* **16**: 339–346.
- Schneider BL, Seufert W, Steiner B, Yang QH, Futcher AB. 1995. Use of polymerase chain reaction epitope tagging for protein tagging in *Saccharomyces cerevisiae*. *Yeast* **11**: 1265–1274.

Copyright © 2004 John Wiley & Sons, Ltd.

- Sherman F. 1991. Getting started with yeast. *Methods Enzymol* **194**: 3–21.
- Tasto JJ, Carnahan RH, McDonald WH, Gould KL. 2001. Vectors and gene targeting modules for tandem affinity purification in *Schizosaccharomyces pombe*. Yeast **18**: 657–662.
- Tsien RY. 1998. The green fluorescent protein. Ann Rev Biochem 67: 509–544.
- Wach A, Brachat A, Alberti-Segui C, Rebischung C, Philippsen P. 1997. Heterologous HIS3 marker and GFP reporter modules

for PCR-targeting in Saccharomyces cerevisiae. Yeast 13: 1065–1075.

- Wach A, Brachat A, Pohlmann R, Philippsen P. 1994. New heterologous modules for classical or PCR-based gene disruptions in *Saccharomyces cerevisiae*. Yeast 10: 1793–1808.
- Wiedenmann J, Schenk A, Rocker C, et al. 2002. A far-red fluorescent protein with fast maturation and reduced oligomerization tendency from *Entacmaea quadricolor* (Anthozoa; Actinaria). *Proc Natl Acad Sci USA* **99**: 11646–11651.